
Tools for Pattern-Based Transformation
of OWL Ontologies

Ondřej Šváb-Zamazal1, Enrico Daga2, Marek Dudáš1, and Vojtěch Svátek1

1 Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{svatek|ondrej.zamazal}@vse.cz
2 STLab, ISTC-CNR, Via Nomentana 56, 00161 Rome, Italy

enrico.daga@cnr.it

1 Motivation for Pattern-Based Ontology Transformation

The high expressivity of the OWL ontology language often allows to express
the same conceptualisation in different ways. A simple example is the differ-
ence between ‘class-centric’ and ‘property-centric’ modelling style, such that the
same notion is modelled as a class in the former (e.g. ‘Purchase’) and an object
property in the latter (e.g. ‘bought from’). Such heterogeneity is an obstacle to
reusing ontologies in advanced semantic web scenarios. In particular, two on-
tologies modelled in different styles are difficult to match or to import to one
another, as few matching systems support complex matching structures that
bridge style heterogeneity, never mind considering schema merging and/or data
migration. Furthermore, opting for a style when designing an ontology may have
impact on the usability and performance of reasoners, as some features cause
performance problems for certain reasoners. Semi-automatic transformation of
the modelling style of existing ontologies, with the help of tools to be presented
in the demo, will alleviate such problems.

The whole tool suite consists of the PatOMat Transformation Framework
(computational core of the approach), the XDtools ontological engineering frame-
work with its Transformation Wizard for ontology adaptation (wrt. a content
pattern to be imported), and the graphical Transformation Pattern Editor.

2 PatOMat Transformation Framework

The central notion in the PatOMat framework3 is that of transformation pat-
tern (TP). A TP contains two ontology patterns (the source OP and the target
OP) and the description of transformation betweem them, called pattern trans-
formation (PT). The representation of OPs is based on the OWL 2 DL profile,
except that placeholders are allowed in addition to concrete OWL entities. An
OP consists of entity declarations (of placeholders and/or concrete entities), ax-
ioms and naming detection patterns; the last capture the naming aspect of the

3 [1] provides more details about the (earlier version of the) framework, and at http://
owl.vse.cz:8080/tutorial/ there is a fully-fledged tutorial for the current version.



OP, which is important for its detection. A PT consists of a set of transfor-
mation links and a set of naming transformation patterns. Transformation links
are either logical equivalence relationships or extralogical relationships (holding
between two entities of different type). Naming transformation patterns serve
for generating names for target entities. Naming patterns range from passive
naming operations, such as detection of a head noun for a noun phrase, to active
naming operations, such as derivation of verb form of a noun.

The framework prototype implementation is available either as a Java library
or as three core services.4 The Java library is directly used in the XD Transfor-
mation Wizard, see Section 3. The whole transformation is divided into three
steps that correspond to the three core services:

– OntologyPatternDetection service takes the TP and an ontology on input,
and returns the binding of entity placeholders on output, in XML. The nam-
ing detection patterns of the source OP are first processed. As a result of
applying the naming aspect, bound placeholders arise that are placed to the
FILTER component of a SPARQL query (generated according to axioms in
the source OP) before its execution.

– InstructionGenerator service takes the binding of placeholders and the TP
on input, and returns transformation instructions on output.

– OntologyTransformation service takes transformation instructions and the
original ontology on input, and returns the transformed ontology on output.

The third service is partly based on OPPL [2] and partly on our specific im-
plementation over OWL-API.5 In contrast to plain OPPL, we use naming con-
straints and we decompose the process of transformation into parts, which en-
ables user intervention within the whole workflow.

3 Support Tools for Ontology Transformation

A specific case of ontology import is the import of ontology content patterns
[5] (as small ‘best-practice’ chunks of ontological knowledge) into legacy ontolo-
gies, which, in turn, often have to undergo transformation. For example, when
an ontology is to be adapted to the AgentRole pattern,6 often seemingly ‘natu-
ral’ classes have to be changed to ‘role’ classes. To make such operations rapid
and smooth, we decided to closely integrate PatOMat, through a Transforma-
tion Wizard, with XDtools,7 an ontological engineering environment specifically
tailored for ontology content patterns (CPs) exploitation.

The eXtreme Design (XD) approach [3] introduced a new generation of meth-
ods for ontology design. Instead of performing language-oriented operations, e.g.
instantiate a class, define a subclass, etc., the designer handles larger chunks of

4 All accessible via the web interface at http://owl.vse.cz:8080/.
5 http://owlapi.sourceforge.net/
6 http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
7 http://extremedesign.sourceforge.net



ontologies (patterns), which leads to modularity and compliance with good de-
sign practices. Drastic decrease of certain frequent mistakes was observed when
the XD methodology [4], the XDtools application, and the OntologyDesignPat-
terns.org community-based pattern catalogue were jointly used. The tool pro-
vides an Eclipse perspective that includes, among other, the XD Specialization
Wizard that guides the user in the operation of CP specialization [5].

Fig. 1. Step-by-step ontology transformation using XD Transformation Wizard

The XD Transformation Wizard can be invoked (as Transform/Import) while
right-clicking on an ontology from the Eclipse project or from the ‘ODP Registry’
view. This action chooses the content pattern to be imported into an ontology. On
the first page of the wizard (see Figure 1) an user selects an ontology from a local
system or from the web. The suitable transformation pattern is also selected.
Finally, the user can turn on recursive detection of pattern occurrences (over a
taxonomy), as supported by a reasoner. After clicking on the ’Next’ button, the
import and detection operations are performed. The second page allows the user
to select from pattern instances (placeholder bindings) returned by the detection
phase. By clicking on an entity, the user can also display its usage within the
ontology, for better overview. The final page of the wizard offers the selection of
finer transformation strategy. After the transformation, the modified ontology is
stored either as a new ontology or as an ontology version.

Finally, in order to support the authoring and update of transformation pat-
terns, we developed a Transformation Pattern Editor (TPE). It allows graphical
modeling (see Figure 2) and export/import from/to the (XML-based) transfor-
mation pattern notation. The upper-left and upper-right pane contain the source
and target OPs, while the bottom one contains the PT. All elements are dis-
played using the ‘auto-layout’ function. TPE is available as a plugin for Eclipse
and uses the Graphical Editing Framework.8

Additional information and installation instructions about the XD Transfor-
mation Wizard and the TPE are at http://owl.vse.cz:8080/tools.html.

8 http://www.eclipse.org/gef/



Fig. 2. Transformation Pattern Editor in action

The demo will feature several variants of wizard-based transformation wrt. two
best-practice content patterns (for role-based modelling and for reified participa-
tion). About ten other TPs can be invoked over RESTful services. TPE can be
shown in the design of a new TP or modification of an existing one.

4 Future Work

The imminent development plan for the XD Transformation Wizard is its in-
tegration into the NeOn toolkit. As enhancement for TPE, online selection of
entities from catalogued content patterns is envisaged. There is also space for
improvement in the automatic layout of entities. Finally, we obviously plan to
integrate TPE with XDtools, and also to link the transformation patterns repos-
itory to the ‘XD Repository’ of XDtools.

The research has been partially supported by the CSF grant no. P202/10/1825.

References

1. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

2. Egaña M., Stevens R., Antezana E.: Transforming the Axiomisation of Ontologies:
The Ontology Pre-Processor Language. In: OWLED 2008.

3. Presutti V., Daga E. Gangemi A., Blomqvist E.: eXtreme Design with Content
Ontology Design Patterns In: Workshop on Ontology Patterns at ISWC 2009.

4. Blomqvist E., Presutti V., Daga E. Gangemi A.: Experimenting with eXtreme De-
sign. In: EKAW-2010, Lisbon, Portugal, 2010.

5. Presutti V., Gangemi A.: Content ontology design patterns as practical building
blocks for web ontologies.: In Proceedings of ER2008. Barcelona, Spain, 2008.


