PatOMat project and beyond:

can patterns support OWL's dorsal muscles to bear the real world?

> Vojtěch Svátek, Ondřej Zamazal University of Economics, Prague Knowledge Engineering Group

Part I. PatOMat project

PatOMat project

- 2010-2012, funded by CSF, <u>http://patomat.vse.cz</u>
- Developing a generic infrastructure for OWL ontology transformation
 - based on transformation patterns
 - includes naming transformation and use of annotations
 - primarily focused on 'modelling style' change
 - preserving the underlying real-world setting but typically not the logical model (and immediate outlook)

Usage scenarios

- Generic style transformation for a different setting
 e.g. OWL ⇔ SKOS
- Ontology matching
 - One ontology adapts its style to the other for easier match
- Ontology import (with adaptive merging)
 - Importing ontology adapts itself to the imported one, or vice versa
- Ontology complexity downgrading
 - e.g. to OWL-EL; typically most careful kind of transformation
- Ontology pattern education
 - e.g. demonstrating the transition between alternative logical patterns such as W3C CPV 'approaches'

Some external collaborations

- Infrastructure *Manchester, Rome*
 - use of (OWL-API and) OPPL; XDTools framework
- Matching *Mannheim*, *Montpellier*
 - cross-feeding with complex matchings / alignment patterns
- Import *Rome*
 - special case of importing (ODP portal) content patterns
- Downgrading *Mannheim*
 - OWL EL use case
- Naming patterns Freiburg

Implementation

- See <u>http://owl.vse.cz:8080</u>
- Self-standing RESTful services for
 - source pattern detection
 - transformation instructions generation
 - actual transformation
- Java library; used in Rome's XDTools (Eclipse/NeOn)
- *Graphical editor* for transformation patterns (TPE)
- Very sparse *collection* of transformation patterns (cca 20)
- Prototype framework, not yet tested on large data
- Demo can follow

PatOMat follow-up

- EU LOD2 (joined from September 2011)
 - part of WP3 "Knowledge Base Creation, Enrichment and Repair" (DL Learner, ORE...)
- CZ-SK LAAOS
 - "Logical aspects of adaptable ontological schemes" – focus on compositionality of transformation patterns
- Possibly CSF postdoc project by Ondřej

Part II. "Beyond"

Is OWL sufficiently rich?

- <u>Opinion 1</u>: Definitely! We struggle to devise reasoners even for its simpler fragments!
- <u>Opinion 2</u>: It's very restricted. We need HOL, even FOL is not enough to model the world!

• Not much in between... \mathfrak{S}

Proposal

- Let's stick to OWL
 - Because it's tractable
 - Because it's widely known and used!
 (even if mostly erroneously)
- Let's find what deserves to be modelled and add it to the models... even if out of sight for reasoners!
 - Annotations and coherent naming are preserved during serialization; naming is (mostly) rendered at first place
- Ampler real-world model available at least to human users and to processing tools (other than classical reasoners) with adequate capability

Where to start from?

- The real world is primarily 'about' individuals
- But A-box modelling in OWL does not offer much discernment
 - 2 types of axioms... plus punning
- OWL patterns thus do not unambiguously match (even the important!) real-world patterns
- If we build T-boxes on the top of an incoherent U, reasoning may not return plausible results

Web of Entities or Web of Data?

- Entities and relationships exist in the real world
- RDF/OWL is designed to work with them... but:
 - There are different ways (modelling styles) to express the same real-world setting of entities
 - The same way of modelling may correspond to multiple real-world settings

- Growing number of open and (sometimes) linked datasets
- Abstraction layer: vocabularies with often vague real-world semantics
- Style heterogeneity is thus obscured...

'Onto-LD Gap' Hypothesis

• The low adoption of ontologies on the WoD is not due to their complex T-box semantics (only)

- (LD folks are curious and not dumb)

• ...but to the unclear mapping of datasets to the underlying real-world setting (WoE)

- (This makes them believe that only the WoD works)

• Allowing the U to capture the common real-world patterns is needed in order to link the LD world to the 'T-boxy' world

What is common enough to deserve (re-)modelling?

- Universals vs. particulars
- Entities vs. relationships
- Concrete individuals vs. collections
- Temporality 3D vs. 4D entities?
- other?
- ...while not dragging the whole (exciting!) foundational ontology inventory back again
- ... only what is *intuitive* and *frequent*

Material for empirical studies

- (Linked Open) Vocabularies
 - and associated datasets
 - practical impact, but harder to analyse
- Ontology Pattern Libraries

. . .

- Manchester, Rome, W3C, Working Ontologist,
- easy to analyse (well described), but may be contrived

Universals vs. particulars

- Universals can be expressed via OWL classes... or OWL individuals
 - Examples: W3C VP, ProductOrServiceModel in GoodRelations, etc.
 - Often just a matter of guess when adopting an ontology!
 - *BTW the logic crowd uses such meta-modelling as reasoning workaround...*

Entities vs. relationships

- Particular relationships can be expressed via OWL property assertions... or via a set of property assertions linked to the same OWL individual
 - Examples: W3C N-ary, Relationship in (FOAF) RV, etc.

Concrete individuals vs. collections

- 'Determinate' collections can be represented via class expressions
- 'Indeterminate' collections can be <u>only</u> <u>approximately</u> modelled via existential restriction
 - Examples: 'some lions' in W3C CPV, SomeItems in GoodRelations, etc.
 - Explicit modelling desirable, different usage...

3D vs. 4D entities

- 4D entities are projections of normal (3D) entities into time intervals
- Example: KEG LD Presenter entity
 - changed affiliation \rightarrow another entity
 - due to minimalist modelling
 - but surely common at least in LD extracted from legacy sources

How to encode into OWL?

- Explicit declaration of real-world setting
 - analogy to OntoClean metaproperties or the FMA 'boolean quadruple'
 - Using the OWL annotation space
 - Using the entity naming 'space'
- Linking between different styles for same real-world setting
 - Transformation patterns (e.g. PatOMat 'educative' scenario)

Next steps

- Detailed empirical analysis of real-world settings behind existing resources
 - Straightforward for pattern libraries
 - More subtle for LD vocabularies
- Clean alignment with the FO stuff (Aldo...)
- Proposal for canonical modelling in OWL
 - Start a W3C IG on Annotations, or another channel?
- Prototype tool support (editor plugins?)
- Logical means for re-modelled real world
 - Some within the DL family, some beyond?