
Constructs Replacing and Complexity
Downgrading via a Generic OWL Ontology

Transformation Framework

Ondřej Šváb-Zamazal1, Anne Schlicht2, Heiner Stuckenschmidt2, and Vojtěch
Svátek1

1University of Economics, Prague, {ondrej.zamazal, svatek}@vse.cz
2University of Mannheim, {anne, heiner}@informatik.uni-mannheim.de

Abstract. Many of the tools supporting the OWL ontological language
face complexity problems when handling certain constructs of the lan-
guage. This leads to the requirement of automatically changing the ontol-
ogy, either by removing a specific type of construct or by adhering (down-
grading) the ontology to a predefined OWL2 profile such as OWL2 EL.
We present an approach to construct replacing and complexity down-
grading that relies on transformation patterns processed by a generic
ontology transformation framework. Transformation patterns allow to
declaratively formulate and transparently execute axiom replacement op-
erations. This potentially preserves derivations that would otherwise be
lost due to simple removal of problematic axioms.

1 Introduction

Existing tools operating on ontologies normally support a certain, well defined,
set of logical operators. In many cases this set of operators is not sufficient
to completely capture the semantics of the OWL language. As a result, these
tools cannot be used on certain ontologies or they provide incomplete reasoning
results. In both cases, the transformation of the input ontology can improve
the situation. In particular, the ontology can be transformed into a version that
only uses the supported operators. Doing this outside the tools gives the user
more flexibility because (s)he can design a transformation that is not directly
hard-coded into the tool.

In our previous work on the PatOMat project1 we already addressed the
general need for ‘style’ transformation in ontological engineering. In this paper
we are concerned with the ‘language profiling’ scenario of transformation, i.e. re-
placing certain OWL constructs that could be hard for some tools. This replace-
ment task is supported by a general ontology transformation framework [12], a
simple transformation pattern language, and a set of web-based services relying
on external tools such as the Ontology Pre-Processor Language (OPPL) and
OWL-API, see Sec. 2. The current paper extends [12] with a description of the

1 http://patomat.vse.cz/

language profiling scenario with its two use cases, a larger collection of transfor-
mation patterns, an experiment, new features of the core implementation and a
new web-based application.

The rest of the paper is structured as follows. Sec. 2 briefly reviews the
PatOMat framework, transformation language and processing services, in the
current form. Sec. 3 introduces the language profiling scenario with its pipeline.
This scenario is then split into two use cases; the first one (Sec. 4) describes the
‘on purpose’ construct replacement use case, while the second (Sec. 5) deals with
complexity downgrading. Complexity downgrading is an extension of the first
scenario in terms of applying more than one transformation pattern dynamically
composed into a sequence according to recommendations from ontology analysis.
Furthermore, an experiment is presented in Sec. 5.2 that deals with the second
use case. Finally, Sec. 6 surveys related work, and Sec. 7 discusses the benefits
of the approach and wraps up the paper.

2 PatOMat Transformation Framework

The central notion in the PatOMat framework2 is that of transformation pattern
(TP). A TP contains two ontology patterns (source OP and target OP) and the
description of the transformation betweem them, called pattern transformation
(PT). For instance, we can specify a TP such that a subsumption relation (as
source, OP1) should be transformed to a SKOS3 taxonomic relationship (as
target, OP2). A schematic description follows.

OP1: ?OP1_A subClassOf ?OP1_B
OP2: ?OP2_A skos:broader ?OP2_B
PT: ?OP1_A~?OP2_A ?OP1_B~?OP2_B.

The representation of OPs is based on the OWL 2 DL profile. However,
while an OWL ontology refers to particular entities, e.g. to class Person, in
the patterns we generally use placeholders, e.g. ?OP1 A. Entities are specified
(i.e. placeholders are instantiated) at the time of instantiation of a pattern. An
OP consists of entity declarations (referring to placeholders or concrete entities),
axioms and naming detection patterns; the last capture the naming aspect of the
OP important for its detection.4 A PT consists of a set of transformation links
and a set of naming transformation patterns. Transformation links are either log-
ical equivalence relationships or extralogical relationships holding between pairs
of entities of different type (such as class vs. individual, as in our example above).
Naming transformation patterns serve for generating new names for old or newly
created entities. Naming patterns range from passive naming operations such as
detection of a head noun for a noun phrase to active naming operations such as
derivation of a verb form of a noun.

2 [12] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
3 http://www.w3.org/TR/skos-primer/
4 The naming aspect is less important for language profiling than it is for ontology

matching or importing (merging).

For instance, the abovementioned TP would transform the following OWL
ontology fragment

Paper subClassOf Document. Review subClassOf Document.
ConferencePaper subClassOf Paper. JournalPaper subClassOf Paper.

to the SKOS terminology fragment

Paper skos:broader Document. Review skos:broader Document.
ConferencePaper skos:broader Paper. JournalPaper skos:broader Paper.

The framework prototype implementation is available either as a java library
or as three core services.5 The java library is directly used in a web-based ap-
plication briefly described in Sec. 5. The whole transformation is divided into
three steps, which correspond to the three services:

– The OntologyPatternDetection service takes the transformation pattern and
a particular original ontology on input, and returns the binding of entity
placeholders on output, in XML. The structural/logical aspect is captured
in the structure of an automatically generated SPARQL query;6 the naming
aspect is dealt with based on its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placehold-
ers and the transformation pattern on input, and returns particular transfor-
mation instructions on output, also in XML. Transformation instructions are
generated according to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation in-
structions and the particular original ontology on input, and returns the
transformed ontology on output.

The third service is partly based on OPPL [2] and partly on our specific im-
plementation over OWL-API.7 Currently we use OPPL for the operations on
axioms and for adding entities, and OWL-API for re/naming entities according
to naming transformation patterns and for adding OWL annotations. As far as
detection is concerned, the SELECT part of OPPL could be used to some extent;
our naming constraints are however out of the scope of OPPL. Furthermore, in
contrast to OPPL, we decompose the process of transformation into parts, which
enables user intervention within the whole workflow.

The framework has been recently enriched with several advanced features
such as recursive processing of structures in ontologies in a single step both
in the detection phase and in the actual transformation phase. Furthermore,
multiple alternative strategies can be applied in handling additional axioms, i.e.
axioms that are not a literal part of an input pattern but get affected by its
transformation; in this case removal can be allowed for both axioms and entities
(with additional options that we omit for brevity), axioms only, or none.

5 All accessible via the web interface at http://owl.vse.cz:8080/.
6 http://www.w3.org/TR/rdf-sparql-query/
7 http://owlapi.sourceforge.net/

The framework was previously explored for two other scenarios. The ontology
matching scenario, where two ontologies are to be matched, is based on the idea
that we can transform the modelling style of one ontology so as to make auto-
mated matching to the other ontology easier [12]. Another scenario deals with
importing (merging) a best-practice ontology content pattern into an existing
‘provisional’ ontology, which thus needs to be adequately adapted [11].

3 PatOMat in Use: Language Profiling Scenario

In comparison with those other scenarios, the language profiling scenario leads
to a fully automatic pipeline. First, a source ontology is pre-processed in order
to syntactically decompose the constructs that can hinder querying in a unified
way. In our case we decompose (→) the following constructs:

– intersection: A subClassOf (B and C) → A subClassOf B. A subClassOf C.8

– disjointness: DisjointClasses(B, C, D) →
B disjointWith C. C disjointWith D. B disjointWith D.

– and disjoint union: DisjointUnion(B, C, D)9 →
B equivalentTo C or D. C disjointWith D.

The next step is a detection performed by the OntologyPatternDetection ser-
vice. There is typically more than one pattern instance as a result of the detection
step. Furthermore, it is usually precise, because in the case of the language profil-
ing scenario, detection is merely based on structural/logical aspects and naming
detection patterns are mostly not needed. The following step amounts to genera-
tion of transformation instructions by the InstructionGenerator service. Finally,
the application of instructions is carried out by the OntologyTransformation ser-
vice according to the selected transformation strategy. By default, it uses the
‘progressive’ transformation strategy, which enables the removal of axioms but
not the removal of entities.

This is the basic pipeline of the language profiling scenario as applied in
the first use case (cf. Sec. 4). In contrast, the complexity downgrading use case
(cf. Sec. 5) slightly modifies the pipeline by adding an analysis of the source
ontology to specify which transformation patterns should be applied. Conse-
quently, selected transformation patterns are dynamically composed into a se-
quence. Finally, a post-processing step is performed for ensuring completness of
the process.

The transformation of language profiling constructs can be generally done in
three ways: either they can be replaced with an equivalent different representa-
tion, or they can be replaced with an approximate different representation, or
they can be removed. The first option is obviously the best one. However, it is
only rarely possible to find an equivalent representation using other constructs

8 For writing axioms we use the intuitive Manchester syntax available at: http://

www.w3.org/TR/owl2-manchester-syntax/
9 B is the disjoint union of C and D.

when in need to eliminate a problematic construct during complexity down-
grading. The second option is more realistic. However, there is often no (even
approximate) alternative way of representation and the problematic construct
has to be simply removed.

4 Ontology Transformation for Specific Language
Construct Replacement

Transformation can be driven by a request for replacing a specific language
construct. In this section we provide an example dealing with nominals. Tackling
nominals can be problematic for some reasoners. In the following example we
will show how nominals can be replaced rather than removed. Let us assume
that we have nominals describing continents and the Continent class defined as
‘one of’ those nominals (implicitly assuming their mutual difference):

Continent equivalentTo {Africa, America, Antarctica, Asia, Australia, Europe}.

Let us further assume that we have the AfricanRedSlip class,10 defined via
the hasContinentOfOrigin property:

AfricanRedSlip subClassOf Ware.
AfricanRedSlip subClassOf (hasContinentOfOrigin value Africa).

Nominals could be simply removed; however then we would lose e.g. part of
the description of AfricanRedSlip. Instead, we can replace a set of nominals
by union of helper classes xxx nc each one accomodating exactly one original
instance of the nominal class:

OneOfContinent equivalentTo (Africa_nc or America_nc or
Antarctica_nc or Asia_nc or Australia_nc or Europe_nc).

Africa a Africa_nc. America a America_nc.
Antarctica a Antarctica_nc. Asia a Asia_nc.
Australia a Australia_nc. Europe a Europe_nc.

This transformation is approximate because it is no longer assured that
e.g. Africa nc could not have other individuals than Africa. Due to this change
we should also modify the description of AfricanRedSlip:

AfricanRedSlip subClassOf Ware.
AfricanRedSlip subClassOf (hasContinentOfOrigin some Africa_nc).

This can be done automatically using our framework with a specific TP.11

It is worth noting that, historically, nominals used to be represented in this
(‘transformed’) way.

10 African red slip is a kind of ancient pottery, see http://open.vocab.org/docs/

AfricanRedSlip.
11 The pattern is available from http://nb.vse.cz/~svabo/patomat/tp/lr/tp_

nominals-6a.xml

Further off-the-shelf transformation patterns for replacing different OWL
constructs are available online.12 They can be divided into three groups: equiv-
alent, approximate and removed representations (cf. Sec. 3).

5 Ontology Transformation for Complexity Downgrading
of an Ontology

The transformation can also be driven by an ontology complexity requirement
of some tool. In such a case, transformation usually comprises more than one
transformation pattern in order to achieve the required complexity level. In this
work we focus on the complexity level corresponding to the OWL2EL profile [7],
since this profile is supported by many tools, e.g. the ELOG-reasoner [8]. In
comparison with the use case from the previous section there are two more
steps. Based on a given list of forbidden constructs, ontology analysis figures
out (by using the OWL-API library) which transformation patterns have to be
executed. These patterns are added into a sequence of transformation patterns
and then executed by the transformation in a sequential order. Additionally there
is a post-processing step where the remaining forbidden constructs are removed
using the OWL-API library. This step ensures completeness of the downgrading
process.

Both use cases from Sec. 4 and 5 are supported by a web-based application.13

Following the input of the source ontology URI (and selected TP in the first use
case), the transformed ontology is displayed (together with a brief transformation
log) and a link to its code is also provided.

5.1 Transformation Patterns Employed in Downgrading to
OWL2EL Profile

There are several OWL 2 constructs that are not supported in the OWL2EL
profile [7]: universal quantifications to a class expression, cardinality restrictions,
disjunctions, class negations, enumerations involving more than one individual,
disjoint properties, irreflexive object properties, inverse object properties, func-
tional and inverse-functional object properties, (a)symmetric object properties.

It is generally difficult to find some replacement of unsupported constructs
since their replacement usually leads to using other unsupported constructs,
e.g. ObjectMaxCardinality could be replaced by a complemented ObjectMin-
Cardinality restriction, which is equally forbidden in OWL2EL.

In the following, we go through three different language constructs that can
be replaced using our transformation patterns (replacement transformation). We
describe them briefly and exemplify the preserved implications. However, let us

12 http://nb.vse.cz/~svabo/patomat/tp/lr/; there is a link to the XML serialization
of each pattern, a short description, and an ontology on which the pattern can be
tested.

13 Available from http://owl.vse.cz:8080/Downgrading/.

note that different solution as a transformation pattern can be suggested and
applied in the framework. Finally, we provide an experiment illustrating the
effect of transformation on query answering results.

Complement of Universal Restriction The complement construct is not
allowed in OWL2EL at all. We can approximately replace it using existential
restriction wrt. the top concept, i.e. instead of having

PizzaWithTopping subClassOf (not (hasTopping only Tomato))

we will have the following

PizzaWithTopping subClassOf (hasTopping some Thing)

In order to exemplify the preservation of derivations, let us consider that we
also have the following axioms in our TBox:

(hasPizzaIngredient some Thing) subClassOf Pizza

hasTopping subPropertyOf hasPizzaIngredient

If the problematic axiom were only removed and not replaced the following
subsumption could not be inferred:

PizzaWithTopping subClassOf Pizza

The corresponding transformation patterns described in this paper are avail-
able online.14

Minimum Cardinality Cardinality restrictions are not allowed in OWL2EL.
Minimum cardinality of 1 can be equivalently replaced by an existential restric-
tion applied on the same filler class. In the case that the minimum cardinality
is higher than one, an approximate transformation can be applied.

For example, instead of having

AcceptedPaper subClassOf (hasDecision min 2 Acceptance)

we will have the following

AcceptedPaper subClassOf (hasDecision some Acceptance)

In order to exemplify the preservation of derivations, let us consider that we
also have the following axioms in our TBox:

EvaluatedPaper = hasDecision some Decision

Acceptance subClassOf Decision

This implies

AcceptedPaper subClassOf EvaluatedPaper

14 http://nb.vse.cz/~svabo/SOFSEM2013/

Enumerations of More than One Individual The OWL2EL profile only
permits enumeration of one individual, therefore transformation must be carried
out in the cases with higher number of individuals. We suggest the following
approximate transformation. Instead of having
EurAsia = {europe, asia}

we will have the following
Europe_nc = { europe }. Asia_nc = { asia }.

Europe_nc subClassOf EurAsia

Asia_nc subClassOf EurAsia

We assume that the individuals Europe and Asia are different. However, in
this way we cannot express that every EurAsia is either Europe nc or Asia nc.

In order to exemplify the preservation of derivations, let us consider that we
also have the following axioms in our TBox:
EuropeanWatch = (hasContinentOfOrigin hasValue europe)

EurAsiaWatch = (hasContinentOfOrigin some EurAsia)

This implies
EuropeanWatch subClassOf EurAsiaWatch

5.2 Experiment

We performed an experiment about the effects of replacement transformation
in comparison with removal transformation, which simply removes the axioms
involving forbidden constructs by OWL-API. The experiment had three steps:

1. Ontology collection gathering. In order to gather collection of ontologies we
used the Watson semantic search.15 We applied four selection criteria for
selecting ontologies into the collection: OWL ontology language (target lan-
guage of the framework), more than 10 classes, more than 5 properties (on-
tologies should not be too small), and absence of imports (current limitation
of the OPPL tool and thus of the framework). This gives us 328 ontolo-
gies. Final criterion says that an ontology must have at least one forbidden
construct transformable by transformation patterns. This reduced the set of
ontologies to 63. However, due to parsing problems (in OWL-API or Jena16),
other syntactical problems in ontologies and inconsistent ontologies, we had
finally 38 ontologies in our experimental collection.

2. Transformation of ontologies. We transformed each of these original ontolo-
gies (O variant of an ontology; see in the ontologies directory17) into the
OWL2EL profile using removal transformation (R variant of an ontology;
see in the ontologiesR directory), using simple modifications of ontologies
such as adding declarations of classes and properties using OWL-API (ST
variant of an ontology; see in the ontologiesST directory) and using replace-
ment transformation with an application of our transformation patterns (T
variant of an ontology; see in the ontologiesT directory).

15 http://kmi-web05.open.ac.uk:8080/WatsonWUI/
16 http://jena.apache.org/
17 Detail web-page report about the experiment along with downloadable collection of

ontologies is at: http://nb.vse.cz/~svabo/SOFSEM2013/

3. Comparison of number of preserved subsumption relations. Finally, for each
transformed version of an ontology we computed the subsumption relations
included in the ontology explicitly (using ARQ in Jena) or implicitly (using
ARQ in Jena and Pellet reasoner18). The generated query was in the follow-
ing shape: ASK Class1 rdfs:subClassOf Class2 .19 Then we automatically
compared the preserved subsumption relations in the R variant wrt. sub-
sumption relations in the original ontology, preserved subsumption relations
in the ST variant wrt. subsumption relations in the original ontology, and,
finally, preserved subsumption relations in the T variant wrt. subsumption
relations in the original ontology.

The number of problematic axioms (obtained using OWL-API) ranged from
11 to 2133. Besides the forbidden constructs listed in Sec. 5.1 there were forbid-
den datatypes in data range and undeclared classes or properties.20 The number
of minimum cardinality replacement transformations ranged from 1 to 120 ap-
plied on all ontologies in the collection and the number of enumeration replace-
ment transformations ranged from 1 to 27 only applied on 8 analysed ontologies.

In total, there were 17 ontologies in which removal transformation had no
negative effect on subsumption relations (Table 1), including 3 ontologies which
had no subsumption relation in the original ontology at all. Next, for 13 ontolo-
gies any kind of transformation did not save subsumption relations. It turns out
that simple modifications (ST variant) improved 7 ontologies with regard to lost
subsumption relations ranging from 1 to 75 saves. Detailed analysis showed that
those seven ontologies missed classes or properties declarations and these were
simply added using OWL-API. Without these modifications the removal trans-
formation by OWL-API simply removed all axioms in which the problematic
entities were involved. Consequently, this also removed asserted subsumption
relations. Finally, there was only one positive effect caused by minimum cardi-
nality replacement transformation, in which the number of missing subsumption
relations decreased from 74 to 62.

Let us have a closer look at one example of preserved subsumptions there. The
replacement transformation preserved, for instance, the following subsumption
relations (an equivalence is decomposed into (1) and (2)):

(1) Module subClassOf StructuralElement

(2) StructuralElement subClassOf Module

These subsumption relations are derived based on the following axioms:

Module subClassOf (element min 1).

StructuralElement subClassOf (element min 1).

element Domain Module.

element Domain StructuralElement.

18 http://clarkparsia.com/pellet
19 Class1 and Class2 were iteratively bound with all combinations of named classes

from given ontology.
20 Although a declaration is not matter of logic, an OWL ontology without declarations

is incomplete and thus in the OWL Full profile.

Thanks to replacement transformation in which “Module subClassOf (element
min 1)” was replaced by “Module subClassOf (element some Thing)” (analogi-
cally for StructuralElement) the (1) and (2) relations were preserved.

This weak overall effect (potentially even intensified considering the 265 on-
tologies in which no replaceable forbidden constructs were identified21) can be
explained by the fact that the current replacement transformation patterns cover
a small set of all problematic issues only. However, any newly designed trans-
formation pattern can be employed within the process in the future. Next, the
replacement trasformation can only have a positive impact (in the setting of our
experiment) if there are further axioms due to which subsumption relations can
be derived (as demonstrated step-by-step for each replacement transformation
in Sec. 5.1). Last but not least, we should also consider that this experiment only
evaluates the effect of preserved subsumption relations but it does not evaluate
the first mentioned use case, which is an “on purpose” construct replacement
use case (Sec. 4). This should be accordingly reflected in a future experiment.

number of ontologies

no difference between O and R variants 17

no positive effect wrt. saved subsumption relations 13

saved subsumptions due to simple modifications 7

saved subsumptions due to replacement transformations 1

Table 1. Effects summary

Regarding the time performance, which includes pattern detection, instruc-
tions generation and transformation, a cardinality replacement transformation
takes approximately ten seconds, while an enumeration replacement transforma-
tion takes twenty seconds. In the case of enumeration replacement transforma-
tion the time increases with a number of transformations because it is applied
iteratively over an ontology, while a cardinality replacement transformation runs
only once for all applicable cardinality transformations in an ontology.

6 Related Work

Prior research on ontology simplification can be divided into generic approaches
and those specifically tailored for a certain (popular) reasoner. Additionally we
also consider general approaches to ontology transformation (not confined to
simplification). The following three paragraphs reflect this distinction.

[6] aimed at elimination of transitivity axioms from an ontology in order
to reduce its expressivity. [1] presented an inference service for approximate
translation of a concept from one Description Logic to (typically) less expres-
sive Description Logic. In comparison with our approach, both these approaches
center on logical features, while we follow a more engineering-oriented approach,
taking into account the view of the human modeller. There is also the approach
published in [10], which aims at tractable TBox reasoning over a very expres-
sive Description Logic. They proposed approximate TBox reasoning using EL

21 On the other hand, we did not check how many of them have forbidden constructs.

rules and additional deduction rules. Transformation of badly tractable con-
structs are realized as additional data structures. In comparison, our approach
addresses general transformation and is centered around the idea of transfor-
mation patterns as reusable transformation rules, while reasoning as such is left
to reasoning tools. Thus, while in our approach a tool obtains a transformed
ontology, in the case of the approach in [10] the transformation is used for an
approximate reasoning algorithm and there is no transformed version of an on-
tology on the output. Furthermore, [10] does not consider nominals replacement
and does not remove every non-EL axiom.

Regarding the tricky expressions for a particular reasoner, in [4] there has
been presented the lint tool Pellint applicable on ontologies incurring reason-
ing performance problems to the Pellet reasoner.22 Particularly, Pellint detects
problematic modeling constructs as patterns. There are two groups of patterns:
axiom-based patterns dealing with a single axiom, and ontology-based patterns
dealing with two or more axioms in the whole ontology. These patterns could be
captured by means of our transformation patterns to some extent.

The most prominent project in ontology transformation in general (i.e. aside
the simplification setting) is probably OPPL [2], which we introduced in Sec. 2;
we directly reuse it in our framework. In [9] the authors consider ontology trans-
lation from the Model Driven Engineering perspective. The basic shape of our
transformation pattern (as described in detail in [12]) is very similar to their
meta-model. However, the transformation is considered at the data level rather
than at the schema level as (primarily) in our approach. In [5] the authors pre-
sented an ontology update framework that can automatically apply change pat-
terns capturing the evolution of a domain of interest. Their approach is however
based on the RDF model and SPARQL update language, while our approach is
built on the top of the OWL model.

7 Conclusions and Future Work

This paper presents an approach to ontology construct replacing and complex-
ity downgrading where pattern-based transformation is applied on the source
ontology to derive a target ontology. We explained these two use cases and
demonstrated their usefulness on examples. We also performed a tiny experiment
from the reasoning perspective; the positive effect of our approach was only weak
there, which is attributed to the fact that the current replacement transformation
patterns only cover a small subset of problematic issues and the ontologies do not
contain additional axioms needed for derivation of subsumption relations with
replaceable forbidden constructs. The strong point of the presented approach is
however that, in contrast to research focused on solving widely the ‘notorious’
problems of logical inference, the users can easily design their own transforma-
tion patterns23 to address a certain, specific and unforeseen, construct-replacing

22 http://clarkparsia.com/pellet/
23 Recently a graphical editor of TP authoring has been released as plug-in for Eclipse:

http://owl.vse.cz:8080/tpe/

use case, such as that specifically dealing with nominals (Sec. 4) or complexity
downgrading for a certain, newly introduced profile (Sec. 5). If such patterns are
shared, other users could easily apply them through the online transformation
web services (i.e. without the necessity to install a particular reasoner as in the
logic-centric approaches to transformation).

We plan to investigate what other kinds of transformation patterns and use
cases and, moreover, other complexity downgrading tasks, could be addressed
by the presented framework. Our approach could be further improved e.g. by
precomputing the subsumptions of named classes in the source ontology and
adding them into the target ontology. Regarding practical implementation, we
plan to extend the support of the framework for analogous datatype-related
constructs in OWL such as DataOneOf.

This research has been partially supported by the DAAD grant “Pattern-based ontol-

ogy transformation supporting ontology matching and reasoning tasks” and by CSF

grant no. P202/10/1825, “PatOMat – Automation of Ontology Pattern Detection and

Exploitation”.

References

1. Brandt S., Kuesters R., Turhan A.-Y.: Approximation and Difference in Descrip-
tion Logics. In: 8th Conf. Principles of Knowledge Representation and Reasoning
(KR2002), Toulouse.

2. Egaña M., Stevens R., Antezana E.: Transforming the Axiomisation of Ontologies:
The Ontology Pre-Processor Language. In: W’shop OWL Experiences and Direc-
tions (OWLED 2008 DC), Washington DC.

3. Iannone L., Palmisano I., Rector A., Stevens R.: Assessing the Safety of Knowledge
Patterns in OWL Ontologies. In: 7th Extended Semantic Web Conference (ESWC
2010), Heraklion.

4. Lin H., Sirin E.: Pellint - A Performance Lint Tool for Pellet. In: W’shop OWL
Experiences and Directions (OWLED 2008), Karlsruhe.

5. Lösch U., Sebastian S., Vrandečić D., Studer R.: Tempus Fugit - Towards an Ontol-
ogy Update Language. In: 6th European Semantic Web Conference (ESWC 2009),
Heraklion.

6. Motik B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univ. Karlsruhe, 2006.

7. Motik B., Grau B. C., Horrocks I., Wu Z., Fokoue A., Lutz C.: OWL 2 Web Ontology
Language Profiles. W3C Recommendation, 2009, online http://www.w3.org/TR/

owl2-profiles/.
8. Noessner J., Niepert M.: ELOG: A Probabilistic Reasoner for OWL EL. In: 5th

Conf. Web Reasoning and Rule Systems (RR 2011), Galway.
9. Parreiras F., Staab S., Schenk S., Winter A.: Model Driven Specification of Ontology

Translations. In: 27th Int’l Conf. Conceptual Modelling (ER 2008).
10. Ren Y., Pan J. Z., Zhao Y.: Soundness Preserving Approximation for TBox Rea-

soning. In: AAAI2010.
11. Svátek V., Šváb-Zamazal O., Vacura M.: Adapting Ontologies to Content Patterns

using Transformation Patterns. In: WOP 2010.
12. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation

Service Exploiting OPPL and OWL-API. In: EKAW 2010.

