
User-Friendly Pattern-Based Transformation
of OWL Ontologies

Ondřej Šváb-Zamazal, Marek Dudáš, and Vojtěch Svátek

Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic

{ondrej.zamazal|xdudm12|svatek}@vse.cz

1 Motivation for Pattern-Based Ontology Transformation

The high expressivity of the OWL ontology language often allows to express the
same conceptualisation in different ways. A simple example is the difference be-
tween ‘class-centric’ and ‘property-centric’ modelling styles, such that the same
notion is modelled as a class in the former (e.g. ‘Purchase’) and an object prop-
erty in the latter (e.g. ‘bought from’). Similarly, concept subordination can be
expressed via a subclass hierarchy or via individuals connected by a dedicated
property (as in SKOS). Such heterogeneity is an obstacle to reusing ontologies
in advanced semantic web scenarios. In particular (as mentioned in [1]), two on-
tologies modelled in different styles are difficult to match or to import into one
another. Furthermore, opting for a style when designing an ontology may have
an impact on the applicability and performance of reasoners, as some features
cause performance problems for certain reasoners. Finally, human users may
also prefer viewing ontologies in a certain form, possibly ‘folding’ parts of their
complexity. Semi-automatic transformation of the modelling style of existing on-
tologies, with the help of tools to be presented in the demo, will alleviate such
problems.

In the paper we first overview the core framework and then focus on user-
oriented tools that allow to perform ontology transformation and edit transfor-
mation patterns in a friendly way.

2 PatOMat Transformation Framework

The central notion in the PatOMat framework1 is that of transformation pat-
tern (TP). A TP contains two ontology patterns (the source OP and the target
OP) and the description of transformation betweem them, called pattern trans-
formation (PT). The representation of OPs is based on the OWL 2 DL profile,
except that placeholders are allowed in addition to concrete OWL entities. An
OP consists of entity declarations (of placeholders and/or concrete entities), ax-
ioms and naming detection patterns; the last capture the naming aspect of the

1 [4] provides more details about the (earlier version of the) framework, and at http://
owl.vse.cz:8080/tutorial/ there is a fully-fledged tutorial for the current version.

OP, which is important for its detection. A PT consists of a set of transfor-
mation links and a set of naming transformation patterns. Transformation links
are either logical equivalence relationships or extralogical relationships (holding
between two entities of different type). Naming transformation patterns serve
for generating names for target entities. Naming patterns range from passive
naming operations, such as detection of a head noun for a noun phrase, to active
naming operations, such as derivation of verb form of a noun.

The framework prototype implementation is available either as a Java library
or as three RESTful services.2 The Java library is directly used in the GUIPOT
and XD Transformation Wizard tools, see Section 3. The whole transformation
is divided into three steps that correspond to the three core services:

– OntologyPatternDetection service takes the TP and an ontology on input,
and returns the binding of entity placeholders on output, in XML. The nam-
ing detection patterns of the source OP are first processed. As a result of
applying the naming aspect, bound placeholders arise that are placed to the
FILTER component of a SPARQL query (generated according to axioms in
the source OP) before its execution.

– InstructionGenerator service takes the binding of placeholders and the TP
on input, and returns transformation instructions on output.

– OntologyTransformation service takes transformation instructions and the
original ontology on input, and returns the transformed ontology on output.

The third service is partly based on OPPL3 and partly on our specific implemen-
tation over OWL-API.4 In contrast to plain OPPL, we use naming constraints
and we decompose the process of transformation into parts, which enables user
intervention within the whole workflow.

3 User-Oriented Tools for Ontology Transformation

The GUIPOT (Graphical User Interface for Pattern-based Ontology Transfor-
mation) Protégé plugin, see Figure 1, was developed in order to bring ontology
transformation into the standard working environment of a knowledge engineer.
The screenshot demonstrates how an ontology fragment expressing the notion
of ‘paper whose decision is rejection’ is transformed into an explicit class Re-
jectedPaper, using a generic transformation pattern (with heuristics for naming
detection/transformation included). After loading the transformation pattern,
GUIPOT displays a list of pattern instances of the source OP detected5 in the
given ontology. Detected pattern instances can be manually adjusted or even
new pattern instances can be created before the transformation. By selecting an

2 All accessible via the web interface at http://owl.vse.cz:8080/.
3 http://oppl2.sourceforge.net/
4 http://owlapi.sourceforge.net/
5 The user can turn on recursive detection of pattern occurrences (over a taxonomy),

as supported by a reasoner.

instance, the detected entities (placeholder bindings) are highlighted in a clas-
sical hierarchy view and also visualized using the OntoGraf plugin6 on the left
part of the plugin window. The right part of the window shows the ontology
after transformation, with affected entities indicated by red arrows.

Fig. 1. GUIPOT in action

Aside from GUIPOT as generic graphical interface, we also aimed at support
for specific ontological engineering scenarios. One of them is the import of ontol-
ogy content patterns [2] (as small ‘best-practice’ chunks of ontological knowledge)
into legacy ontologies, which, in turn, often have to undergo transformation. For
example, when an ontology is to be adapted to the AgentRole pattern,7 often
seemingly ‘natural’ classes have to be changed to ‘role’ classes. To make such
operations rapid and smooth, we decided to closely integrate PatOMat with
XDtools,8 an ontological engineering environment specifically tailored for ontol-
ogy content patterns (CPs) exploitation. The tool provides the NeOn toolkit
perspective that includes, among others, our Transformation Wizard.

When the wizard is invoked, the user chooses the content pattern to be im-
ported into an ontology. On the first page of the wizard (see Figure 2) s/he then
selects an ontology and a transformation pattern. The second page offers the
pattern instances returned by the detection phase. By clicking on an entity the
user can also display its usage within the ontology. The final page of the wizard
offers the selection of a finer transformation strategy.

6 http://protegewiki.stanford.edu/wiki/OntoGraf
7 http://ontologydesignpatterns.org/wiki/Submissions:AgentRole
8 http://extremedesign.sourceforge.net

Fig. 2. Step-by-step ontology transformation using XD Transformation Wizard

In order to support the authoring and update of transformation patterns, we
also developed a Transformation Pattern Editor (TPE). It allows for their graph-
ical modeling and export/import from/to the (XML-based) TP notation. TPE
is available as a plugin for Eclipse and uses the Graphical Editing Framework.9

A web-based version is also planned in the near future.
Additional information and installation instructions for GUIPOT, XD Trans-

formation Wizard and TPE are at http://owl.vse.cz:8080/tools.html.

4 Demo Summary

The demo10 will feature several variants of wizard-based transformation in NeOn
wrt. two best-practice content patterns (for role-based modelling and for reified
participation). Other TPs can be applied over GUIPOT or via RESTful ser-
vices with simple HTML interface. TPE can be shown in the design of a new
TP or modification of an existing one. Finally, a dedicated HTML interface to
complexity-downgrading, i.e. a reasoner-targetted setting of the transformation
(not described in the paper due to space limitations), can also be demoed.

The research has been partially supported by the CSF grant no. P202/10/1825.
We thank Enrico Daga for his assistance in including PatOMat into XDTools.

References

1. Euzenat J., Shvaiko P.: Ontology matching. Springer, 2007.
2. Presutti V., Gangemi A.: Content ontology design patterns as practical building

blocks for web ontologies.: In Proceedings of ER2008. Barcelona, Spain, 2008.
3. Šváb-Zamazal O., Daga E., Dudáš M., Svátek V.: Tools for Pattern-Based Trans-

formation of OWL Ontologies. Presented as demo at ISWC’11, Bonn, 2011.
4. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation

Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

9 http://www.eclipse.org/gef/
10 This demo paper is successor of [3]. The main enhancements since then are the

GUIPOT tool and the NeOn version of the wizard.

