
Detection and Transformation of Ontology
Patterns

Ondřej Šváb-Zamazal1, Vojtěch Svátek1, François Scharffe2, Jérôme David2

1University of Economics, Prague, {ondrej.zamazal, svatek}@vse.cz
2 INRIA & LIG, Montbonnot, France, {jerome.david,francois.scharffe}@inrialpes.fr

Abstract. As more and more ontology designers follow the pattern-
based approach, automatic analysis of those structures and their ex-
ploitation in semantic tools is becoming more doable and important. We
present an approach to ontology transformation based on transformation
patterns, which could assist in many semantic tasks (such as reasoning,
modularisation or matching). Ontology transformation can be applied
on parts of ontologies called ontology patterns. Detection of ontology
patterns can be specific for a given use case, or generic. We first present
generic detection patterns along with some experimental results, and
then detection patterns specific for ontology matching. Furthermore, we
detail the ontology transformation phase along with an example of trans-
formation pattern based on an alignment pattern.

1 Introduction

On-demand ontology transformation inside a formalism such as OWL1 can be
useful for many semantic applications. The motivation for transformation is that
the same conceptualization can be formally modeled in diverse ways; (parts of)
an ontology thus can be transformed from one modeling choice to another, taking
advantage of logical ontology patterns, such as those published by W3C and
referring to e.g. ‘n-ary relations’ [5] or ‘specified values’. Although the strictly
formal semantics may change, the intended meaning of the conceptualisation
should be preserved.

In [15] are described three use cases:

– Reasoning. Some features of ontologies cause performance problems for
certain reasoners. Having information about these features, possibly gathered
via machine learning methods, we can transform parts of ontologies with such
problematic entities.

– Modularization. Modular ontologies are a pre-requisite for effective knowl-
edge sharing, often through importing. However, if the source and target
ontology are modeled using different styles (such as property- vs. relation-
centric), the user faces difficulties when choosing fragments to be imported.

1 http://www.w3.org/TR/owl2-primer/



– Matching. Most ontology matching (OM) tools deliver simple entity-to-
entity correspondences. Complex matching can be mediated by alignment
(originally called ‘correspondence’) patterns [9], which however most OM
tools do not support. Attempting to transform, prior to matching, an on-
tology to its variant using transformation patterns, could thus help the OM
tools.

These use cases share an ontology transformation service that makes use of
ontology transformation patterns. In this paper we present details about our pat-
tern detection and transformation approach. We propose generic detection based
on SPARQL query and sketch the specific detection within ontology matching
context. Ontology transformation is based on transformation patterns which are
close to alignment patterns.

The rest of the paper is organized as follows. Section 2 presents the over-
all workflow of ontology transformation, followed with an illustrative example.
Section 3 details the generic ontology pattern detection along with results of
experiment. Next, we describe specific detection method in context of ontology
matching. Section 4 presents the relationship between transformation pattern
and alignment pattern and gives an example. The paper is wrapped up with
Related work, Conclusions and Future Work.

The paper is an extended version of [17]; the major novelty is in the pattern
detection method that takes account of the target ontology and applies clustering
to the pre-matched correspondences.

2 Ontology Transformation Process

2.1 Workflow of Ontology Transformation

This section presents the workflow of the ontology transformation. The transfor-
mation as such takes as input an ontology O1 and an ontology transformation
pattern. It outputs a new ontology O1′ resulting from applying an ontology
transformation pattern on O1. An ontology transformation pattern consists of
an ontology pattern A, its counterpart ontology pattern B, and a pattern trans-
formation between them.

Definition 1 (Ontology Pattern). Ontology Pattern consists of:

– Mandatory non-empty set E of entity declarations, i.e. axioms with rdf:type
property, in which entity placeholders are used instead of concrete entities.2

– Optional set Ax of axioms asserting facts about entities from E.
– An optional naming pattern NP capturing the naming aspect of the ontology

pattern relevant for its detection.

Definition 2 (Pattern Transformation). Pattern Transformation (PT) con-
sists of:
2 Placeholders are used in transformation patterns in general.



– Mandatory set LI of links, where a link can be either an equivalence corre-
spondence3 or an extralogical link eqAnn between an annotation literal and
a real entity4 or a link eqHet between heterogeneous entities.

– Optional set ENP of entity naming transformation patterns.

The ontology pattern A and the ontology pattern B typically represent the
same conceptualization modeled in two different ways. The transformation pat-
tern captures information on which entities should be transformed and how. This
is similar to alignment patterns to some extent, see Section 4.

In Figure 1 you can see this three-step workflow of ontology transformation
(for more details see [16]). Rectangle-shaped boxes represent RESTful services,
while ellipse-shaped boxes represent input/output data.5 Ontology transforma-
tion is broken up into three basic services:6

O1

OntologyPatternDetection

OntologyTransformation

O1'

Ontology Pattern

Transformation Pattern

InstructionGenerator

Pattern Instance

Transformation Instructions

Fig. 1. Ontology Transformation Workflow

3 Currently, we do not consider further correspondence relations such as disjointWith,
subClassOf etc. for specifying specific relation between old and new version of entity
(i.e. versioning). It can be considered in future work.

4 An annotation literal is an entity that is only used for annotation purposes, while a
real entity is real in this sense.

5 In colours, blue boxes represent RESTful services; yellow ones represent input; green
ones represent output which are in next step input; red ones represent output.

6 Accessible via an HTML user interface at http://owl.vse.cz:8080/.



OntologyPatternDetection7 outputs binding of placeholders in XML. It takes
transformation pattern with its ontology patterns and particular ontology on
input. This service internally automatically generates query based on ontology
pattern and executes it. Structural/logical aspect is captured as SPARQL query
and naming constraint is specifically dealt with based on description within
ontology pattern. By now, this is partly implemented. This will be fully imple-
mented with support of a Manchester syntax in SPARQL which will be available
in new release of Pellet at the end of March, 2010. Details about two kinds of
detection are in section 3.

InstructionGenerator8 outputs particular transformation instructions in XML.
It takes particular binding of placeholders and transformation pattern9 on input.
Transformation instructions are generated according to transformation pattern
and pattern instance.

OntologyTransformation10 outputs transformed ontology. It takes particular
transformation instructions and particular ontology on input. This service is
partly based on Ontology Pre-Processor Lanaguage (OPPL) [3] useful for ma-
nipulation with ontologies and partly on our specific implementation based on
OWL-API11.

These services are implemented as RESTful services available via POST re-
quests. There is also available one-step service12 which takes ontology, transfor-
mation pattern and pattern instance on input and returns transformed ontology.

During the ontology transformation process, many ontology transformation
patterns from the input library may be detected and applied. Moreover, an on-
tology transformation pattern may be applied many times if its ontology pattern
A was detected a number of time in the ontology.

2.2 Example of Ontology Transformation

In this section we provide an example of transformation pattern based on align-
ment pattern. We can imagine situation where in one ontology there is con-
ceptualization of accepted paper using restriction while in other ontology it is
captured as one class. This corresponds to ’Class By Attribute Value Pattern’
depicted in Figure 2.

Based on this pattern transformation pattern tp-hasValue can be defined:
OP1 : E={Class: A, ObjectProperty: p, Individual: a}, Ax={A Equiva-

lentTo: (p values a)},
OP2 : E={Class: B, Literal: An1, Literal: An2}, Ax2 ={B annotation :

discr property An1, B annotation:value An2},
PT : LI={A EquivalentTo: B, p eqAnn: An1, a eqAnn: An2}, enp(B) =

make passive verb(a) + head noun(A),
7 http://owl.vse.cz:8080/ontologyTransformation/detection/
8 http://owl.vse.cz:8080/ontologyTransformation/instructions/
9 Ontology pattern is part of transformation pattern.

10 http://owl.vse.cz:8080/ontologyTransformation/transformation/
11 http://owlapi.sourceforge.net/
12 http://owl.vse.cz:8080/ontologyTransformation/service/



o2

o1

Restriction

hasStatus Accept

value

AcceptedPaper

Fig. 2. Instance of alignment pattern ’Class By Attribute Value’

where the example of entity naming transformation pattern from pattern
alignment enabling to make proper name for new entity, e.g. from ’Accept’ as a
and ’PresentedPaper’ as A it makes ’AcceptedPaper’ as B.

Particular instantiation of this pattern could be as it follows: O1 : A =
PresentedPaper, p = hasStatus,a = Accept O2 : B = AcceptedPaper,An1 =′

hasStatus′, An2 =′ Accept′, see Figure 3.
By applying tp-hasValue pattern on O1 we can get new entity ’AcceptedPa-

per’ in O1′ which is perfectly matchable with entity ’AcceptedPaper’ from O2
by any simple string-based technique. Besides new entity ’AcceptedPaper’ there
is further added an annotations which enabling reverse transformation of lost
information13. We can use alignment pattern which is included in this trans-
formation pattern in order to get complex correspondence, i.e.: (O1#hasStatus
value O1#Accept = O2#AcceptedPaper).

3 Ontology Pattern Detection

3.1 Generic variant

Generic variant of ontology pattern detection14 does not consider final applica-
tion of ontology transformation. This phase takes as input the ontology pattern A
of an ontology transformation pattern and tries to match this ontology pattern in
the ontology O1. The detection of these patterns has two aspects: structural and
naming ones. Our method first detect the structural aspect using the SPARQL

13 There are different strategies how to cope with removing entities and axioms from
original ontology, see [16]

14 This is based on [12]



o1

o2

PresentedPaper

Restriction

AcceptedPaperhasStatus Accept

value

hasStatus

eqAnn

Accept

eqAnn annotation:discr_propertyannotation:value

Fig. 3. Instance of transformation pattern for hasValue

language15. We currently use the SPARQL query engine from the Jena frame-
work16. SPARQL queries corresponding to each detected pattern are detailed in
sections below. Then, the method applies the lexical heuristic computing the ra-
tion between a number of sharing distinct tokens between entity (MainEntity)
from a pattern and other entities (Entities) and a number of all distinct tokens
of Entities. The particular instantiation of MainEntity and Entities depends
on the ontology pattern, see below. This heuristic works on names of entities (a
fragment of the entity URI) which are tokenised (See [13]) and lemmatized.17

Lemmatization can potentially increase the recall of the detection process. The
lexical heuristic constraint is fulfilled when the ratio is higher than a certain
threshold which is dependent on particular ontology pattern. The motivation of
this computation is based on an assumption that entities involved in patterns
share tokens. More entities share the same token, the higher probability of oc-
currence of a pattern. We detail below three patterns that were detected in the
experiment described in Section 3.1.

Attribute Value Restriction The AVR pattern has been originally introduced in
[9] as a constituent part of an alignment pattern, a pattern of correspondence
between entities in two ontologies. Basically, it is a class the instances of which

15 http://www.w3.org/TR/rdf-sparql-query/
16 http://jena.sourceforge.net/
17 We use the Stanford POS tagger http://nlp.stanford.edu/software/tagger.

shtml.



are restricted with some attribute value. The SPARQL query for detection of
this ontology pattern is the following:

SELECT ?c1 ?c2 ?c3
WHERE {
?c1 rdfs:subClassOf _:b.
_:b owl:onProperty ?c2.
_:b owl:hasValue ?c3.
?c2 rdf:type owl:ObjectProperty.
FILTER (!isBlank(?c1)) }

In this query we express a value restriction applied on a named class. Here,
restriction class is a superclass of this named class, however we could also employ
an equivalence as it was in transformation pattern, see Section 2.2. Furthermore
restricting properties must be of the type ’ObjectProperty’ in order to have in-
dividuals and not data types as values. Currently we do not consider the naming
aspect for this pattern.

Specified Values We first considered the SV pattern in [14], but it had been
originally presented in a document from the SWBPD group18. This ontology
pattern deals with ’value partitions’ representing specified collection of values
expressing ’qualities’, ’attributes’, or ’features’. An example is given in the next
section 3.1.

There are mainly two ways for capturing this pattern which are reflected by
two different SPARQL queries. Either individuals where qualities are instances
can be used for the detection:

SELECT distinct ?p ?a1 ?a2
WHERE {
?a1 rdf:type ?p.
?a2 rdf:type ?p.
?a1 owl:differentFrom ?a2 }

Or subclasses where qualities are classes partitioning a ’feature’ can be used:

SELECT distinct ?p ?c1 ?c2
WHERE {
?c1 rdfs:subClassOf ?p.
?c2 rdfs:subClassOf ?p.
?c1 owl:disjointWith ?c2
FILTER (
!isBlank(?c1) && !isBlank(?c2) && !isBlank(?p))}

We are interested in mutually disjoint named classes (siblings) and we use
non-transitive semantics (ie. direct) of ’subClassOf’ relation here. Otherwise we
would get ’specified value’ as many times as there are different superclasses for
those siblings. Regarding the initialisation of variables from the Algorithm 1,
the MainEntity is either a ?p instance (for the first query) or class (for the
second query). Entities are all other entities from the SELECT construct. The
experimental setting for the threshold is 0.5.

18 http://www.w3.org/TR/swbp-specified-values/



Reified N-ary Relations We have already considered the N-ary pattern in [14]. It
has also been an important topic of the SWBPD group [5], because there is no
direct way how to express N-ary relations in OWL19. Basically, a N-ary relation
is a relation connecting an individual to many individuals or values. For this
pattern we adhere to a solution introduced in [5]: introducing a new class for a
relation which is therefore reified. For examples in the next section 3.1 we will
use the following syntax (property(domain,range)):

relationX(X, Y ); relationY 1(Y, A); relationY 2(Y, B)

The structural aspect of this pattern is captured using the following SPARQL
query:

SELECT ?relationX ?Y ?relationY1 ?relationY2 ?A ?B
WHERE {
?relationX rdfs:domain ?X.
?relationX rdfs:range ?Y.
?relationY1 rdfs:domain ?Y.
?relationY1 rdfs:range ?A.
?relationY2 rdfs:domain ?Y.
?relationY2 rdfs:range ?B
FILTER (?relationY1!=?relationY2)}

These conditions (as one variant of detection) are not completely in corre-
spondence with real constraint ’ the reified relation class being in the range of
one property’. This SPARQL query is rather one experimental way how we tried
to detect this pattern. It would be worth trying other more flexible options.
In order to increase the precision of the detection we also apply lexical heuris-
tic introduced above, where variable MainEntity is initialised with the value
?relationX. Entities are all other entities from the SELECT construct. The
experimental setting for the threshold is 0.4.

Experiment In order to acquire a high number of ontologies, we applied the
Watson tool20 via its API. We searched ontologies imposing conjuction of the
following constraints: OWL as the representation language, at least 10 classes,
and at least 5 properties. Alltogether we collected 490 ontologies. However, many
ontologies have not been accessible at the time of querying or there were some
parser problems. Futhermore we only include ontologies having less than 300
entities. All in all our collection has 273 ontologies.

Table 1 presents overall numbers of ontologies where certain amount of on-
tology patterns were detected.

We can see that patterns were only detected in a small portion of ontologies
from the collection. In four ontologies, the AVR pattern was detected more than
10 times. It reflects the fact that some designers tend to extensively use this
pattern. Other two ontology patterns were not so frequent in one ontology (the
SV pattern was detected maximally 8 times and the N-ary pattern was detected
19 It also holds for OWL 2. The notion of N-ary datatype was not introduced there,

except for syntactic constructs allowing further extensions, see http://www.w3.org/

TR/2009/WD-owl2-new-features-20090611/#F11:_N-ary_Datatypes
20 http://watson.kmi.open.ac.uk/WS_and_API.html



≥ 10 (9 − 4) 3 2 1 all

AVR pattern 4 – 2 1 1 8
SV pattern – 4 – 2 9 15
N-ary pattern – 5 4 16 25 50

Table 1. Frequency table of ontologies wrt. number of ontology patterns detected.

maximally six times). On the other hand the most frequent pattern regarding a
number of ontologies was the N-ary pattern. This goes against an intution that
this pattern is quite rare.

In the following three sections we present three detected positive examples
of instances of given pattern.

AVR pattern This ontology pattern was found many times in a wine on-
tology21. One positive example is the following:

Chardonnay v3 hasColor.{White}
Chardonnay wine is restricted on these instances having value ’White’ for the

property hasColor. On the other hand, one negative example is the following22:
SV pattern The following23 is one example which we evaluated as positive

(a shared token is ’Molecule’, c = 1.0):

AnorganicMolecule v Molecule; OrganicMolecule v Molecule

This can be interpreted as a collection of different kinds of molecules which
is a complete partitioning. Furthermore disjointness is ensured by a query.

N-ary pattern Due to the usage of a relaxed structural condition there are
a lot of negative cases. Even if the lexical heuristics constraint improves this low
precision, there is still ample space for improvement.

In the PML ontology24 the following positive example was detected:
hasPrettyNameMapping(InferenceStep, PrettyNameMapping)
hasPrettyName(PrettyNameMapping, string)

hasReplacee(PrettyNameMapping, string)

This is the example of N-ary relation where the reified property ’Pretty-
NameMapping’ (’?Y’) captures additional attributes (’hasReplacee’) describ-
ing the relation (’hasPrettyNameMapping’). c = 0.5 where shared tokens were
’Pretty’ resp. ’has’.

Once an ontology pattern is detected, the corresponding transformation can
be applied as exemplified in Section 2.2.

3.2 Specific Variant within Ontology Matching Context

Every use case imposes specific requirements on transformation which should
be reflected in the phase of detection in order to increase pattern detection
21 http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
22 http://sweet.jpl.nasa.gov/ontology/space.owl
23 http://www.meteck.org/PilotPollution1.owl
24 http://inferenceweb.stanford.edu/2004/07/iw.owl



before applying transformation. In the case of ontology matching, the detection
process should consider both to-be-matched ontologies. The approach25 will be
illustrated on two tiny fragments of ontologies26, O1 and O2. In real cases,
ontologies will of course contain many more entities. ie. clustering will be more
meaningful:

O1: PresentedPaper v Paper v Document ≡ Paperu 3 hasStatus.{Accept}
O2: AcceptedPaper v Paper v Document

We start from a set of equivalence correspondences 〈O1 : ei, O2 : ej ,=〉 cre-
ated based on an easy-to-compute lexical distance dL(O1 : ei, O2 : ej). Using,
say, the Jaccard measure for dL, and filtering out the correspondences below the
threshold of 0.5, we get the following six correspondences:
A = 〈O1 : Paper, O2 : Paper〉, B = 〈O1 : Paper, O2 : AcceptedPaper〉,

C = 〈O1 : PresentedPaper, O2 : AcceptedPaper〉, D = 〈O1 : Accept, O2 : AcceptedPaper〉,

E = 〈O1 : PresentedPaper, O2 : Paper〉, F = 〈O1 : Document, O2 : Document〉.

Second, these correspondences are clustered based A B C D E

A - - - - -
B 0.5 - - - -
C 1.0 0.5 - - -
D 1.5 1.0 0.5 - -
E 0.5 1.0 0.5 1.0 -
F 1.0 1.0 2.0 2.5 1.5

Table 2.

on the aggregation—here, average—of structural dis-
tances of entities (for each of O1,O2 separately) involved
in them: d(ci, cj) = avg(dS(O1 : ei, O1 : ej), dS(O2 :
ei, O2 : ej)) where ci and cj are correspondences be-
tween O1 and O2, and dS is a structural distance com-
puted as the minimal number of edges (i.e. an edge is
any kind of property relating two entities) between the
entities. For example, dS(O1 : Paper,O1 : Accept) = 2
and dS(O2 : Paper,O2 : AcceptedPaper) = 1. The ini-
tial matrix of distances between correspondences used for their clustering is in
Table 2. Edge counting could of course be replaced with more elaborate ontology
distance measuring, as in [2].

Using hierarchical clustering we might possibly get five out of the six cor-
respondences in the same cluster, A,B,C, D, E, in which the average distance
of correspondences is 1. The output of this phase is the set of entities from O1
taken from this cluster: {Paper, PresentedPaper, Accept}. These entities would
be input for the next phase, where patterns would be detected over those entities
and corresponding transformation carried out.

4 Transformation Patterns vs. Alignment Patterns

As we have already mentioned transformation patterns consists of three com-
ponents (see [16] for more details): ontology pattern A, B and pattern transfor-
mation between them. Pattern transformation consists of links between entities
in order to depict which entity from ontology pattern A should be transformed
to which entity from ontology pattern B. Link can be logical equivalence cor-
respondence or extralogical relating two different kinds of entities, e.g. between
property and class. There is further important information about how to name
newly added entity or how to rename old entity.
25 Initially presented in [15]
26 Inspired by OntoFarm, http://nb.vse.cz/~svabo/oaei2009.



Transformation patterns can be based on matching/alignment patterns [9]
considering its equivalence correspondences. But there are important differences
in other aspects. From purpose perspective, while matching pattern’s purpose
is a representation of recurring aligning structures at the ontological level27,
purpose of transformation pattern is a representation how one structure can be
transformed to conceptually similar other structure.

Furthermore, instead of a correspondences within alignment pattern there is
a pattern transformation part in transformation pattern. In this part there are
transformation links between entities. These links can be defined between homo-
geneous entities (equivalence correspondences), heterogeneous entities (eqHet)
and between real and annotation literals (eqAnn). These extralogical links en-
able us to link logical patterns in terms of their alternatives.

Regarding transformation as such, transformation operations are defined over
atomic entities - renaming, adding/removing over axioms applicable on original
entities. Complex expressions are also considered within transformation pattern
however in comparison with alignment pattern they are only meaningful as a
part of some axiom. It does not make sense to add/remove unnamed entity (e.g.
restriction class) unless it is involved in some axiom. It means that in the case
of matching we consider as matchable components atomic entities and/or (even
unnamed) complex expressions. On the other hand, in the case of transformation
we consider as transformable components atomic entities and axioms as whole.

5 Related Work

Regarding ontology pattern detection, there are two related aspects: ontology
patterns representation, and patterns detection. Regarding patterns in ontolo-
gies, here presented ontology patterns are based on results of Semantic Web
Best Practices and Deployment Working Group28 (SWBPD). There are further
activities in this respect like ontology design patterns (ODP)29. The SWBPD
concentrates on logical patterns which are domain-independent, the ODP con-
siders many diverse kinds of ontology design patterns (incl. logical patterns,
content patterns, reasoning patterns etc.). So far we did not directly reuse ODP
patterns but we plan to do so in the close future.

While the purpose of those two activities is to provide ontology designers
with the best practices on how to model certain situations, we are interested
in detecting these ontology patterns. On the one hand ontology patterns can
emerge by chance or they can be used intentionally by the ontology designer. In
the latter case, detection of ontology patterns should be easier. In both cases,
since we have in mind an ontology transformation we always take an ontology
pattern and its one or more alternative variants.
27 We restrict all possible alignment patterns to them which are modeled merely at the

ontological level. Alignment patterns driven by data migration are currently omitted
in our transformation.

28 http://www.w3.org/2001/sw/BestPractices/
29 See e.g. http://ontologydesignpatterns.org



In [8] the authors generally consider using SPARQL expressions for extracting
Content Ontology Design Patterns from an existing reference ontology. It is
followed by a manual selection of particular useful axioms towards creating new
Content Ontology Design Pattern.

SPARQL enables us to match structural aspects of ontology patterns by
specifying a graph pattern with variables. But SPARQL is a query language for
RDF. However ontology patterns are rather DL-like conceptualizations. There-
fore we have to consider a translation step between DL-like conceptualizations
and the RDF representations which is not unique. In order to overcome this kind
of issue we could use some an OWL-DL aware query language, eg. SPARQL-
DL[11]. However this language does not support some specific DL constructs e.g.
restriction and it is not fully implemented yet. Next, we should consider not only
asserted axioms but also hidden ones. This could be realized using a reasoner
which could materialize all hidden axioms. Furthermore the SPARQL language is
not sufficient for specific lexical constraints (such as synonymy or hyperonymy).
We need to either make some additional checking (post-processing), or alterna-
tively to implement a specific SPARQL FILTER function. Such FILTER func-
tions could make the SPARQL language quite expressive however they are also
usually computationally expensive [7]. It raises a question of right balance be-
tween the expressivity of the query language (here it holds for working with syn-
onyms/hyperonyms in SPARQL query) and computational efficiency. By now,
we use a two-phase process for detection of ontology patterns: a SPARQL query
for the structural aspects and then a post-processing of the results for lexical
constraints.

Regarding the transformation part of our work, an immediate solution would
be to use XSLT. However, XSLT transformations are not directly applicable to
RDF because of its alternative representations. XSPARQL [1] overcomes this
limitation by combining SPARQL with XSLT. XSPARQL constitutes an alter-
native to detecting and transforming ontology parts as we propose in this paper.
It however mixes the detection and transformation parts. As already mentioned
in the introduction of this paper we try to keep a clear distinction between the
pattern detection and the transformation process.

Furthermore, there is a large amount of research in ontology transformation.
It can be divided into transformation within a language (especially OWL) and
across languages.

In [10] authors consider ontology translation from ’Model Driven Engineering’
perspective30. They concentrate on the way how to represent the alignment as
translation rules (i.e. at least in this paper on the data level). They argue that it
is important to retain clarity and accessibility enable modellers to see translation
problems from three aspects: semantic, lexical and syntactic. Basic shape of our
transformation pattern is very similar to their metamodel. They consider having
an input pattern which is a query and then there is an output pattern for creating

30 We can expect that this work will be part of the TwoUse toolkit in future. This
toolkit bridges the semantic web and model driven engineering projects, http://
west.uni-koblenz.de/twouse



output as well as variables binding the elements. Because their approach is close
to Unified Modeling Language (UML) they also base their particular text syntax
of transformation rules on the Atlas Transformation Language (ATL). Input and
output patterns are modelled as MatchedRule. Furthermore, there are variables
(in patterns) and OCL expressions. However, they transfer ontology translation
problem to model driven engineering. They use MOF for working with ontologies
and translation rules at the data level.

In comparison with the previous work authors in [4] leverage the ontology
translation problem to generic meta-model. This work has been done from model
management perspective which implies generality of this approach. From this
perspective, meta-models are languages for defining models. In general, model
management tries to ’support the integration, evolution and matching of (data)
models at the conceptual and logical design level’. In comparison with our ap-
proach there are important differences. On the one hand, they consider trans-
formations of ontologies (expressed in OWL DL), but these transformations
are considered into generic meta-model or into any other meta-model (Mod-
elGen operator). Their approach is based on meta-model level from which each
meta-model could benefit in the same way, e.g. matching, merging, transforming
models between meta-models. On the contrary, in our approach we stay in one
meta-model, the OWL language, and we consider transformation as a way of
translating of certain representation into its alternatives.

In our current approach we base on OPPL [3] which is a macro language,
based on Manchester OWL syntax, for manipulating ontologies written in OWL
at the level of axioms. [16] describes how our approach uses this language.

A lot of attention has been paid to transformation between different modeling
languages, transformation based on meta-modeling using UML, and specifically
transformation of data-models [6].

6 Conclusion and Future Work

In this paper we have presented the workflow of the ontology transformation
along with its RESTful services. Furthermore, we presented ontology pattern
generic detection as well as specific variant for ontology matching context. Fi-
nally, we presented transformation patterns and their relationship with align-
ment patterns along with one illustrative example.

In future we should improve performance of ontology pattern generic de-
tection as well as do more experiments with specific detection within ontology
matching context. Presented specific detection approach is rather naive. In real
setting, it would probably suffer from the dependency on the initial string-based
matching (used as trigger for complex matching rather than ‘equivalence match-
ing’ on its own). In reality, each cluster would also have to be examined for
possible inclusion of nearby entities, e.g. by checking synonymy using a the-
saurus.

Further we will consider ontology transformation from a system viewpoint,
incl. user interaction, incremental selection of patterns, consistency checking of



the newly created ontology etc. Furthermore, we will work on extension of the
ontology transformation pattern library with other ontology patterns, e.g. name
patterns and other patterns based on the ODP portal.

Acknowledgements

This work has been partially supported by the CSF grant P202/10/1825 (PatOMat
project). The authors would also like to thank Luigi Iannone for his support
about OPPL usage.

References

1. W. Akhtar, J. Kopecky, T. Krennwallner, and A. Polleres. XSPARQL: Travel-
ing between the XML and RDF worlds and avoiding the XSLT Pilgrimage. In
Proceedings of ESWC-08.

2. J. David and J. Euzenat. Comparison between ontology distances (preliminary
results). In Proceedings of ISWC-08.

3. L. Iannone, M. Egana, A. Rector, and R. Stevens. Augmenting the Expressivity
of the Ontology Pre-Processor Language. In Proceedings of OWLED-2008.

4. D. Kensche, C. Quix, M. A. Chatti, and M. Jarke. GeRoMe: A Generic Role Based
Metamodel for Model Management. In Journal on Data Semantics, 2007.

5. N. Noy and A. Rector. Defining n-ary relations on the semantic web, Apr. 2006.
6. B. Omelayenko and M. Klein, editors. Knowledge Transformation for the Semantic

Web. IOS press, Amsterdam (NL), 2003.
7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In

Proceedings of ISWC-2006.
8. V. Presutti and A. Gangemi. Content ontology design patterns as practical building

blocks for web ontologies. In Proceedings of ER-2008. Barcelona, Spain.
9. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of

Innsbruck, 2009.
10. F. Silva Parreiras, S. Staab, S. Schenk, and A. Winter. Model driven specification

of ontology translations. In Proceedings of ER-2008.
11. E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In Proceedings

of OWLED-2007.
12. O. Šváb-Zamazal, F. Scharffe, and V. Svátek. Preliminary results of logical on-

tology pattern detection using sparql and lexical heuristics. In Proceedings of
WOP-2009.

13. O. Šváb-Zamazal and V. Svátek. Analysing Ontological Structures through Name
Pattern Tracking. In Proceedings of EKAW-2008.

14. O. Šváb-Zamazal and V. Svátek. Towards Ontology Matching via Pattern-Based
Detection of Semantic Structures in OWL Ontologies. In Proceedings of the Znalosti
Czecho-Slovak Knowledge Technology conference, 2009.

15. O. Šváb-Zamazal, V. Svátek, J. David, and F. Scharffe. Towards Metamorphic
Semantic Models. In Poster session at ESWC-09.

16. O. Šváb-Zamazal, V. Svátek, and L. Iannone. Pattern-Based Ontology Transfor-
mation Service as OPPL Extension. In EKAW-2010. To be submitted.

17. O. Šváb-Zamazal, V. Svátek, and F. Scharffe. Pattern-based Ontology Transfor-
mation Service. In KEOD-2009.


