PatOMat project and beyond: can patterns support OWL’s dorsal muscles to bear the real world?

Vojtěch Svátek, Ondřej Zamazal
University of Economics, Prague
Knowledge Engineering Group
Part I. PatOMat project
PatOMat project

• 2010-2012, funded by CSF, http://patomat.vse.cz

• Developing a generic infrastructure for OWL ontology transformation
 – based on transformation patterns
 – includes naming transformation and use of annotations
 – primarily focused on ‘modelling style’ change
 – preserving the underlying real-world setting but typically not the logical model (and immediate outlook)
Usage scenarios

• Generic style transformation for a different setting
 – e.g. OWL ⇔ SKOS

• Ontology matching
 – One ontology adapts its style to the other for easier match

• Ontology import (with adaptive merging)
 – Importing ontology adapts itself to the imported one, or vice versa

• Ontology complexity downgrading
 – e.g. to OWL-EL; typically most careful kind of transformation

• Ontology pattern education
 – e.g. demonstrating the transition between alternative logical patterns such as W3C CPV ‘approaches’
Some external collaborations

• Infrastructure – *Manchester, Rome*
 – use of (OWL-API and) OPPL; XDTools framework

• Matching – *Mannheim, Montpellier*
 – cross-feeding with complex matchings / alignment patterns

• Import – *Rome*
 – special case of importing (ODP portal) content patterns

• Downgrading – *Mannheim*
 – OWL EL use case

• Naming patterns – *Freiburg*
Implementation

• See http://owl.vse.cz:8080
• Self-standing RESTful services for
 – source pattern detection
 – transformation instructions generation
 – actual transformation
• Java library; used in Rome’s XDTTools (Eclipse/NeOn)
• Graphical editor for transformation patterns (TPE)
• Very sparse collection of transformation patterns (cca 20)
• Prototype framework, not yet tested on large data
• Demo can follow
PatOMat follow-up

• EU LOD2 (joined from September 2011)
 – part of WP3 “Knowledge Base Creation, Enrichment and Repair” (DL Learner, ORE…)

• CZ-SK LAAOS
 – „Logical aspects of adaptable ontological schemes“ – focus on compositionality of transformation patterns

• Possibly CSF postdoc project by Ondřej
Part II. „Beyond“
Is OWL sufficiently rich?

• **Opinion 1**: Definitely! We struggle to devise reasoners even for its simpler fragments!

• **Opinion 2**: It’s very restricted. We need HOL, even FOL is not enough to model the world!

• Not much in between… 😞
Proposal

• Let’s stick to **OWL**
 – Because it’s tractable
 – **Because it’s widely known and used!** (even if mostly erroneously)

• Let’s find what deserves to be modelled and add it to the models… even if **out of sight for reasoners!**
 – Annotations and coherent **naming** are preserved during serialization; naming is (mostly) rendered at first place

• Ampler real-world model – available at least to human **users** and to processing **tools** (other than classical reasoners) with adequate capability
Where to start from?

- The real world is primarily ‘about’ individuals
- But A-box modelling in OWL does not offer much discernment
 - 2 types of axioms… plus punning
- OWL patterns thus do not unambiguously match (even the important!) real-world patterns
- If we build T-boxes on the top of an incoherent U, reasoning may not return plausible results
Web of Entities or Web of Data?

• **Entities** and relationships exist in the real world
• RDF/OWL is designed to work with them… but:
 – There are different ways (modelling styles) to express the same real-world setting of entities
 – The same way of modelling may correspond to multiple real-world settings
• Growing number of open and (sometimes) linked datasets
• Abstraction layer: vocabularies with often vague real-world semantics
• Style heterogeneity is thus obscured…
‘Onto-LD Gap’ Hypothesis

• The low adoption of ontologies on the WoD is not due to their complex T-box semantics (only)
 – (LD folks are curious and not dumb)
• …but to the unclear mapping of datasets to the underlying real-world setting (WoE)
 – (This makes them believe that only the WoD works)

• Allowing the U to capture the common real-world patterns is needed in order to link the LD world to the ‘T-boxy’ world
What is common enough to deserve (re-)modelling?

- Universals vs. particulars
- Entities vs. relationships
- Concrete individuals vs. collections
- Temporality – 3D vs. 4D entities?
- other?
- ...while not dragging the whole (exciting!) foundational ontology inventory back again
- ... only what is intuitive and frequent
Material for empirical studies

• (Linked Open) Vocabularies
 – and associated datasets
 – practical impact, but harder to analyse

• Ontology Pattern Libraries
 – Manchester, Rome, W3C, Working Ontologist, ...
 – easy to analyse (well described), but may be contrived
Universals vs. particulars

• Universals can be expressed via OWL classes… or OWL individuals
 – Examples: W3C VP, ProductOrServiceModel in GoodRelations, etc.
 – Often just a matter of guess when adopting an ontology!

 – BTW the logic crowd uses such meta-modelling as reasoning workaround…
Entities vs. relationships

• Particular relationships can be expressed via OWL property assertions… or via a set of property assertions linked to the same OWL individual
 – Examples: W3C N-ary, Relationship in (FOAF) RV, etc.
Concrete individuals vs. collections

• ‘Determinate’ collections can be represented via class expressions

• ‘Indeterminate’ collections can be only approximately modelled via existential restriction
 – Examples: ‘some lions’ in W3C CPV, SomeItems in GoodRelations, etc.
 – Explicit modelling desirable, different usage…
3D vs. 4D entities

• 4D entities are projections of normal (3D) entities into time intervals

• Example: KEG LD – Presenter entity
 – changed affiliation → another entity
 – due to minimalist modelling
 – but surely common at least in LD extracted from legacy sources
How to encode into OWL?

• Explicit declaration of real-world setting
 – ...analogy to OntoClean metaproperties
 or the FMA ‘boolean quadruple’
 – Using the OWL annotation space
 – Using the entity naming ‘space’

• Linking between different styles for same real-world setting
 – Transformation patterns (e.g. PatOMat
 ‘educative’ scenario)
Next steps

• Detailed empirical analysis of real-world settings behind existing resources
 – Straightforward for pattern libraries
 – More subtle for LD vocabularies

• Clean alignment with the FO stuff (Aldo…)

• Proposal for canonical modelling in OWL
 – Start a W3C IG on Annotations, or another channel?

• Prototype tool support (editor plugins?)

• Logical means for re-modelled real world
 – Some within the DL family, some beyond?